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Abstract. Uncertainties surround the radiobiological consequences of exposure to charged 
particles, despite the increasing use of accelerated ion beams for cancer treatment 
(hadrontherapy). In particular, little is known about the long-term effects on normal tissue at 
the beam entrance or in the distal part of the Spread-Out Bragg Peak (SOBP). Moreover, 
although the relative biological effectiveness (RBE) of particle radiation has been traditionally 
related to the radiation linear energy transfer (LET), it has become increasingly evident that 
radiation-induced cell death, as well as long term radiation effects, is not adequately described 
by this parameter. Hence, exploring the effectiveness of various ion beams at or around the 
Bragg peak of monoenergetic ion beams can prove useful to gain insights into the role played 
by parameters other than the particle LET in determining the outcome of particle radiation 
exposures. In this context, the upgrade of the Tandem irradiation facility at Naples University 
here described, has allowed us to perform a series of preliminary radiobiological measurements 
using proton and carbon ion beams. The facility is currently used to irradiate normal and cancer 
cell lines with ion beams such as oxygen and fluorine.  

1. Introduction 
Ion beams have been used for radiotherapy applications for some years [1], [2], [3] with protons used 
in many facilities worldwide while heavier ions (i.e. carbon) have been exploited in Japan and 
Germany with impressive outcomes [4]. Despite these encouraging results, there are still considerable 
uncertainties regarding the biological effects caused by exposure to charged particles. A deeper 
understanding of the effects caused by heavy ions on biological samples is therefore essential to 
develop a rigorous theory of ion radiation action at the cellular and molecular level and improving 
tumour hadrontherapy.  
 It is now commonly accepted that the biological effectiveness of charged particles is critically 
determined by the pattern of ionizations produced by the ion traversal (i.e. track structure) [5]. While 
the linear energy transfer (LET) is a good indicator of the rate of energy deposition, at extremely high 
and inhomogeneous LET regions it does not predict biological effects with a simple relationship [6-8]. 
Radiotherapy studies investigating the biological response of different cell lines to different types of 
charged particles have focused mainly on the cell killing effect on tumour cells in the so-called Spread 
Out Bragg Peak (SOBP) [9-11]. However, effects caused in tissues at the beam entrance channel, in 
the distal part of the SOBP and in the surrounding areas also need to be addressed. Moreover, the 

Nano-IBCT 2011 IOP Publishing
Journal of Physics: Conference Series 373 (2012) 012019 doi:10.1088/1742-6596/373/1/012019

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

increasing interest in utilizing a range of ions, including light ions other than protons, such as boron or 
lithium, and ions heavier than carbon in therapy [12], demands further development of suitable models 
(such as the Local Effect Model) to measure and predict the effectiveness of these ions in biological 
systems. 
 In this manuscript, we report the upgrading of the radiobiological irradiation facility at the 
University of Naples to include ions other than protons. Details of the experimental set-up including 
ion source, dose and energy characterization are reported together with first biological measurements 
of cell survival, bystander effects and radiation-induced premature cellular senescence in normal 
human fibroblasts (AG01522) exposed to a proton ion beam. Survival curves following carbon ion 
irradiation of a panel of glioma human cell lines of varying radiosensitivity are also reported. 
 
2. Materials and Methods 
 
2.1. Irradiation set-up 
The radiobiological irradiation facility at the Department of Physical Sciences of the University of 
Naples “Federico II” is centered on a 3-MV HVEC TTT-3 Tandem accelerator. TiH2 and graphite 
cathodes and a negative ion sputtering source are used to produce hydrogen and carbon beams, 
respectively, which can then be accelerated up to 6 MeV for protons and 21 MeV for carbon. Lithium 
(Li) and Fluorine (F) ion beams have also been produced using LiF cathodes and accelerated up to 12 
MeV and 21 MeV, respectively. Finally, oxygen beams were produced by spraying O2 gas onto a 
tantalum cathode; they can be accelerated up to 21 MeV. Due to energy loss in the scattering device 
and during extraction from vacuum, the maximum ion energy incident onto the cells is slightly lower 
as indicated in table 1. The beam intensity is monitored by several Faraday cups placed along the 
beam line and a fast computer controlled beam shutter is positioned after the last cup in order to 
precisely control the dose delivered to the biological samples. Downstream, a 1 mm collimator is used 
to focus the beam on the scattering chamber where an Au foil (0.22 µm) scatters the beam achieving 
the required homogeneous irradiation at the end of the beam line (approximately 2 m away from the 
scattering chamber, see figure 1). Proton irradiation was performed using the described set-up, in 
which the beam passed through a 6 μm Mylar window, a 2 mm air gap and the Mylar base (2.5 μm) on 
which cells were grown. In order to minimize energy loss and thus make it possible to use also heavier 
ion beams for radio-biologically relevant experiments, the Mylar substrate on which the biological 
samples are seeded was reduced to 1.5 µm and also used as vacuum window at the end of the beam 
line. In this way, the air gap and relative uncertainty on energy loss is abolished. This requires a 
differential vacuum section at the end of the beam line, which can be pumped independently from the 
main beam line allowing for positioning and removal of the biological samples (figure 1). To prevent 
mechanical stress on Mylar foil, this is laid upon a tungsten grid of 50 μm wires, which translated in 
6% opacity on the irradiated surface. 
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Figure 1. Schematic diagram (not to scale) of the beam line end with differential vacuum 
sections and the biological sample holder.  

 
2.2. Dosimetry and dose monitoring 
Energy spectra and dosimetric measurements are performed 2 m away from the scattering chamber by 
using Si-based detectors as well as CR39 polycarbonate solid state track detectors. Three Si-based 
detectors (300 μm thick and 25 mm2 sensitive area, 14 keV resolution) are amounted at the end of the 
beam line. The first one is centred with the beam axis and is therefore positioned in the same place 
where the biological samples will be during the irradiation. This detector is used to characterise the 
irradiation beam (particle type, energy, fluency) and it is removed during the sample irradiation. The 
two other Si-based detectors are placed symmetrically at 3.5 cm from the beam axis and are 
permanently mounted at the end of the beam line for continuously monitoring the dose rate during 
irradiation. All three Si-based detectors are cross-calibrated in order to estimate beam uniformity and 
dose delivered to the biological samples. CR39 solid-state track detectors (SSTDs) positioned at the 
irradiation spot using the biological sample holders (see below) are also used to verify and cross-
calibrate the Si-based detector response. Pre- and post-irradiation CR39 counts performed on at least 
10 random fields at light microscope (32X, corresponding to a field area of 1.25 10-4 cm2) were used to 
evaluate the Si-based detector calibration factor and eventually correct retrospectively nominal dose 
values.  
 The dose absorbed by the biological sample is calculated using the following formula: 
 

Dose (Gy) = Fluence (particles/cm2) × LET (keV/μm) × 1.6 10−9. 
 
Particle fluence and beam uniformity were measured and monitored by means of the CR-39 SSTDs. 
From it, administered doses were retrospectively calculated using the calibration factor between Si 
detector counts and measured mean particle numbers per cm2 from the CR39 plastics. Etching was 
carried out by KOH 10N at 80 ºC for 30 min. Calculated uniformity across the Mylar base (irradiation 
field) was 7%. Typical dose rates ranged between 0.5 and 2 Gy min-1. 
 
2.3. Sample preparation 
Custom-made pyrex glass cylindrical wells were glued onto a well stretched Mylar foil (1.5 µm) by 
means of araldite® and cured in oven at 140 ºC for 4 h. Two days prior to irradiation cells from a 
single-cell suspension were seeded at about 4 104 cells/well in 2 ml growth medium. A cell monolayer 
was thus obtained on the day of exposure. At the moment of irradiation the medium was aspirated and 
a sterile cap placed on the cylinder which was then placed horizontally in the sample holder.  
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 For the clonogenic measurements of directly irradiated samples, cells were washed with PBS and 
trypsinzed from the Mylar based wells straight after the irradiation using 0.5 ml of 0.025% trypsin-
EDTA incubated at 37oC for 5-10 minutes. The sample density of the resulting single cell solution was 
estimated by hemocytometer counting and the desired number of cells plated in T25 plastic flasks. 
After 14 days incubation at 37oC, 5%CO2, colonies were fixed and stained using crystal violet solution 
(0.05% w/v in methanol) for manual scoring. For the bystander measurements, 2 ml medium was 
removed from the irradiated wells and added to cells in unexposed wells through a 0.2 µm filter 
straight after the irradiation. The bystander unexposed wells were then incubated at 37oC for 1 hr 
before following the trypsination and reseeding protocol described above.  
 For radiation-induced senescence experiments, cultures were propagated and tested at time 
intervals by means of commercially available kits (β-galactosidase assay): briefly, cells seeded in 35-
mm petri dishes, fixed in paraformaldehyde and incubated in β-galactosidase (β-gal) staining solution 
overnight at 37 ºC in the absence of CO2. Scoring of senescent cells (positive for β-gal) was performed 
by means of light microscopy sampling random fields: senescent cells appeared brightly green. At 
least 500 cells per sample were scored.  
 The cell lines used for the preliminary experiments reported in this manuscript were 3 tumor cell 
lines (U87MG, T98G and LN229) all derived from human gliobastomas, differing slightly in their 
genetic make-up (i.e. tp53 status) and a normal human fibroblast cell line (AG01522). These specific 
cell lines were chosen as glioblastomas are one of the human tumors most suitable for hadrontherapy 
treatment due to their radio-resistance and difficulty in removal by surgery. On the other hand, 
fibroblasts are commonly found as connective and supportive tissue in many parts of the body and are 
inevitably exposed during external beam radiotherapy.  
 
3. Results 
 
3.1. Ion energy 
Protons of nominal energy E = 4 MeV were accelerated by a terminal voltage VT of 2 MV. 12C ions 
were produced with q=5+ (VT = 2.4 MV). From measured spectra, H and 12C beams emerged from Au 
foil with energies of 3.5 MeV and 13.7 MeV, respectively. An example of a measured spectrum after 
the Au foil is shown in figure 2. Further energy loss due to the Mylar sheet on which cells are seeded 
and, for protons, an air gap, resulted in incident energy on cells of 3.3 MeV for protons and 12.4 MeV 
for carbon ions. 

 
Figure 2. Measured spectrum for 12C ion beam reaching the biological samples. 
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3.2. LET calculations 
Incident energy, LET values and residual ranges were estimated using SRIM 2011 (www.srim.org) 
and results are reported below.  
 

Table 1. Range of incident energies and LET values for cellular irradiation 

Ion Incident Energy 
[MeV] 

Incident LET 
[keV/µm] 

Residual Range 
in Water 

[µm] 
p 3.3 11 174 

12C 12.4 730 16 
16O 15.5 1,100 15 
19F 16.7 1,350 14 

 
 As indicated in figure 2, the energy spread measured as FWHM is <5% of the mean ion energy 
which translates into an uncertainty in the LET calculations of ~3%. It must be noted that the LET 
values reported are those incident (i.e., at the surface of the biological sample). 
 
3.3. Proton Irradiation 
3.3.1. Cell survival 
Survival measurements from normal human fibroblasts cells (AG01522) directly exposed to 
monoenergetic 3.3 MeV proton beams have been compared to data from clonogenic experiments 
performed with 225 kVp X-rays and 62 MeV proton from the INFN-LNS facility (figure 3). For the 
latter, the beam was modulated to obtain a SOBP as used for clinical applications [13] and cells 
exposed to the centre of the SOBP. For the X-rays and the 62 MeV proton experiments, cells were 
irradiated in plastic flasks but similar trypsization and re-seeding procedure were followed.  

 
Figure 3. AG01522 survival following exposure to 3.3 MeV protons ( ) and centre of SOBP for a 62 
MeV proton beam (▲). 225 kVp X-ray survival curve is also reported ( ). 
  
RBE values at 10% survival (RBE0.1) were calculated from the α and β parameters obtained fitting the 
experimental data with the linear quadratic model.  
 

Table 2. RBE values for AG01522 cells irradiated with proton beams. 
Proton Energy 
[MeV] 

LET 
[keV/µm] RBE0.1 

3.3 11 1.57 ± 0.07 
62 - Centre SOBP 4 1.14 ± 0.02 
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3.3.2. Bystander effect 
AG01522 cells were also used for investigation of the bystander response following 3.3 MeV proton 
exposures. Survival data for the bystander experiments are reported in figure 3 as a function of the 
dose received by the directly exposed cells from which the media was transferred.  
 

 
Figure 3. Survival following media transfer from AG01522 exposed to 3.3 MeV protons. 

 
3.3.3. Senescence 
The onset of cellular senescence was assayed both as an early and a late-occurring response to 3.3 
MeV proton irradiation (figure 4).  
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Figure 4. Early (72 hrs, left plot) and late (up to 38 days, right plot) cellular senescence post 3.3 MeV 
proton exposure. X-ray data are also reported for comparison.  
 
3.4. Carbon 
3.4.1. Cell survival 
The biological effectiveness of proximal-to-Bragg peak (~16 μm before end of range) Carbon ion 
beam was investigated by measuring the survival fraction of 3 glioma cell lines (figure 5). No 
statistically significant differences were observed between the 3 cell lines with an estimated RBE0.1 of 
~1.7 compared to conventional X-ray beams (data not included). 
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Figure 5. Cell survival of gliobastoma cell lines exposed to 12.4 MeV 12C beam 

 
4. Discussion 
In this manuscript we report the successful upgrade of the radiobiology beam line facility at the 
University of Naples (Italy) with inclusion of a wide range of ion species. Carbon, Oxygen and 
Fluorine have been added to protons as beams that can be extracted into biological samples through a 
differential vacuum chamber and thin Mylar substrates. Field uniformity and dose rate are suitable for 
a wide range of radiation biology investigations. The maximum energy available is such to allow the 
heavier ions to just penetrate a single cell layer. This makes the facility ideal to investigate the 
biological effectiveness of the final part of the ion tracks reporting cellular effects as a function of the 
incident LET (as the LET varies drastically within the cell at these energies) and the atomic number 
(Z) of the ion beam. The effectiveness of the final part of ion tracks is critical for the optimization of 
RBE values to be used in clinical settings as large effects are expected and cancer cells as well as 
“healthy” cells may experience such traversals.  
 Initial biological experiments have been performed with proton and carbon beams using normal 
and cancer human cell lines. Survival fractions of normal human fibroblast cells (AG01522) irradiated 
with 3.3 MeV protons have been compared to data obtained following exposures to conventional X-
ray and modulated energetic proton beams (centre of SOBP of 62 MeV protons from the INFN-LNS). 
Data indicate a significantly higher RBE (~1.6) for the 3.3 MeV protons compared to the centre of the 
SOBP (~1.1) highlighting how fixed RBE values for clinical modulated beams is an 
oversimplification, and considerable enhancement is to be expected in the distal part of the SOBP 
[14]. Interestingly, our bystander investigation shows a considerable reduction in the clonogenic 
potential of cells receiving media from irradiated samples. The magnitude of the effect (~50% survival 
reduction) could be due to the high density of cells irradiated (~105 cells in 2 ml) suggesting that 
signal concentration could modulate the bystander response. Finally, our proton data show cellular 
senescence significantly elevated as early as 72 hr post irradiation, contrary to what was observed with 
X-rays. Moreover, the level of senescent cells is constantly found elevated among proton-irradiated 
cultures compared to controls for up to over a month post exposure. Interestingly, at lower dose there 
is a higher occurrence of senescent cells which is consistent with cellular senescence as a sub-lethal 
stress response and in accordance with our previous results with carbon ion beams [15]. Consequences 
of non-lethal stress responses are of considerable interest as long term late effects, including secondary 
cancers, will ultimately determine the outcome of radiotherapy treatments.  
 Experiments with carbon beams aimed at quantifying the lethal effects of the 12C track end in a 
panel of human glioma cell lines. No significant differences between the 3 cell lines used (U87MG, 
T98G and LN229) have been observed. When compared to X-rays, an RBE of ~1.7 can be estimated. 
This is considerably lower than what is expected in the centre of a clinical modulated carbon beam but 
in line with the RBE decrease at very high LETs (i.e., 700 keV/µm) [16]. In fact, according to the 
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classical overkill effect, at such very high LET values, RBEs ought to be close to 1, hence our data 
may imply inadequacy of LET to describe complex effects near the Bragg peak possibly determined 
by the track structures. Future studies will be aimed at investigating the biological effectiveness of 
different types of ions with similar LET characteristics. This will provide insights into the role of delta 
electrons in determining the biological response to ion exposures.  
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